Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

6-(4-Bromophenyl)-6,7-dihydro-1,3-dioxolo[4,5-g]quinolin-8(5H)one: bilayers built from $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds

John N. Low, ${ }^{\text {a }}$ Justo Cobo, ${ }^{\text {b }}$ Paola Cuervo, ${ }^{\text {c }}$ Rodrigo Abonia ${ }^{\mathrm{c}}$ and Christopher Glidewell ${ }^{\mathrm{d} *}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ${ }^{\text {b }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, ${ }^{\text {ch }}$ Grupo de Investigación de Compuestos Heterociclícos, Departamento de Química, Universidad de Valle, AA 25360, Colombia, and ${ }^{\mathbf{d}}$ School of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
Correspondence e-mail: cg@st-andrews.ac.uk

Received 29 September 2004
Accepted 30 September 2004
Online 22 October 2004
Molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{3}$, exhibit a polarized molecular-electronic structure. A combination of one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond links the molecules into sheets, and pairs of sheets are linked into bilayers by a single $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bond.

Comment

As part of a synthetic programme targeted on compounds displaying important biological properties, we have recently focused on hydroquinoline derivatives because the dioxolotetrahydroquinolin-8-one structure, for example, has been found in compounds used as antimitotic and antitumour agents (Prager \& Thredgold, 1968; Donnelly \& Farrell, 1990; Kurasawa et al., 2000; Zhang et al., 2000). We report here the molecular and supramolecular structure of 6-(4-bromo-phenyl)-6,7-dihydro-1,3-dioxolo[4,5-g]quinolin-8(5H)-one, (I), which has been synthesized by 6 -endo intramolecular cyclization from the corresponding 2 -aminochalcone; the structures of a range of these precursors have been reported recently (Low, Cobo, Nogueras et al., 2004).

The molecule of (I) contains a stereogenic centre at atom C10 (Fig. 1); the reference molecule was selected as one having an S configuration, but the centrosymmetric space group accommodates equal numbers of R and S enantiomers. In addition to the two planar carbocyclic rings, the molecule contains two heterocyclic rings, both of which are non-planar. The five-membered ring is folded across the $\mathrm{O} \cdots \mathrm{O}$ line, and for the atom sequence $\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3 \mathrm{a}-\mathrm{C} 7 \mathrm{a}$, the ringpuckering parameter φ_{2} (Cremer \& Pople, 1975) has a value of $37(2)^{\circ}$, consistent with an envelope conformation (Evans \&

Boeyens, 1989). For the nitrogen-containing ring, the parameters corresponding to the atom sequence N5-C5-C6$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ are $\theta=52.3(5)^{\circ}$ and $\varphi=291.5(6)^{\circ}$, corresponding closely to an envelope conformation, where the idealized values are $\theta=54.7^{\circ}$ and $\varphi=(60 n)^{\circ}$; in (I), the ring is folded along the N5 \cdots C 9 line.

(I)

(Ia)

(II)

The bond distances in (I) (Table 1) provide evidence for some polarization of the molecular-electronic structure. Within the central ring of the fused tricyclic unit, the C3a-C4 and C7-C7a bonds are shorter than the typical values found in delocalized aromatic rings (Allen et al., 1987) and are much shorter than the remaining bonds, which themselves are longer than normal for delocalized aromatic rings. In addition, the $\mathrm{C} 5-\mathrm{N} 5$ bond is shorter than the typical value for bonds of this type involving pyramidal N (mean value $=1.419 \AA$ and lower quartile value $=1.412 \AA$), and the $\mathrm{C} 6-\mathrm{C} 8$ bond is again much shorter than normal for $\mathrm{C}_{\mathrm{ar}}-\mathrm{COR}$-type bonds (mean value $=$ $1.488 \AA$ and lower quartile value $=1.478 \AA$). Finally, we note that the $\mathrm{C} 8-\mathrm{O} 8$ bond is also long for its type. These observations, taken together, provide evidence for the importance of the polarized form ($\mathrm{I} a$) in addition to the conventional aromatic form (I).

Figure 1
The S enantiomer of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

organic compounds

The molecules of (I) are linked by a combination of $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds (Table 2) into a double-layer structure, whose formation is readily analysed in terms of the simple motifs generated by each of the individual hydrogen bonds. In the first such motif, atom N 5 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O8 in the molecule at $\left(x, \frac{3}{2}-y, \frac{1}{2}+z\right)$, so forming a $C(6)$ chain (Bernstein et al., 1995) running

Figure 2
Part of the crystal structure of (I), showing the formation of a $C(6)$ chain along [001] built from $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions $\left(x, \frac{3}{2}-y, \frac{1}{2}+z\right)$ and $(x, y, 1+z)$, respectively.

Figure 3
Part of the crystal structure of (I), showing the formation of a $C(7)$ chain along [001] built from $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. For clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (\#) are at the symmetry positions ($x, \frac{1}{2}-y, \frac{1}{2}+z$) and $(x, y, 1+z)$, respectively.
parallel to the [001] direction and generated by the c-glide plane at $y=\frac{3}{4}$ (Fig. 2). In addition, aryl atom C12 in the molecule at (x, y, z) acts as a hydrogen-bond donor also to atom O 8 but in the molecule at $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, so forming a $C(7)$ chain parallel to [001], this time generated by the c-glide plane at $y=\frac{1}{4}$ (Fig. 3). The combination of these two chain motifs generates a (100) sheet in the form of a $(4,4)$-net (Batten \& Robson, 1998) built from a single type of $R_{4}^{3}(20)$ ring (Fig. 4).

Two sheets of this type, related to one another by inversion, pass through each unit cell, one each in the domains $0.03<x<0.41$ and $0.59<x<0.97$; adjacent sheets are linked into pairs by means of a $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bond. Atom C 2 in the molecule at (x, y, z), which lies in the domain $0.03<x<0.41$, acts as a hydrogen-bond donor via atom $\mathrm{H} 2 A$ to the $\mathrm{C} 3 A-\mathrm{C} 7 A$ carbocyclic ring in the molecule at $(-x$, $2-y,-z$), which lies in the domain $-0.41<x<-0.03$; the resulting centrosymmetric motif (Fig. 5) serves to link two adjacent sheets into a bilayer, but there are no directionspecific interactions between adjacent bilayers.

It is of interest to compare the supramolecular aggregation of (I) with that in the related compound (II) (Low, Cobo, Ortíz et al., 2004), in which $\mathrm{N}-\mathrm{H}$ bonds are absent. In (II), the molecules are linked into chains of rings by a combination of

Figure 4
A stereoview of part of the crystal structure of (I), showing the formation of a (100) sheet of $R_{4}^{3}(20)$ rings. For clarity, H atoms not involved in the motifs shown have been omitted.

Figure 5

Part of the crystal structure of (I), showing the formation of a centrosymmetric dimer built from $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds. For clarity, H atoms bonded to N atoms or to the C atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(-x, 2-y,-z)$.
$\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds, both of which utilize aromatic $\mathrm{C}-\mathrm{H}$ bonds.

Experimental

For the synthesis of (I), a mixture of 1-(6-amino-1,3-benzodioxol-5-yl)-3-(4-bromophenyl)prop-2-en-1-one ($0.2 \mathrm{~g}, 0.58 \mathrm{mmol}$), 2-propanol (15 ml) and 4-toluenesulfonic acid (50 mg) was heated under reflux for 2 h . After cooling, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using hexane-ethyl acetate $(4: 1 \mathrm{v} / \mathrm{v})$ as eluant. The product, (I) (75% yield; m.p. 490 K), is a yellow luminescent solid. MS (70 eV): m/e (\%): 345/347 (90/85, [$\left.\left.M^{+}\right]\right), 190\left(100,\left[M-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right]\right), 163$ (61, [$\left.M-\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{Br}\right]$). Crystals suitable for single-crystal X-ray diffraction were grown from a solution in 2-propanol.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{3}$

$M_{r}=346.18$
Monoclinic, $P 2_{1} / c$
$a=21.2470$ (11) \AA
$b=5.8263$ (3) A
$c=11.4131$ (6) A
$\beta=98.197(3)^{\circ}$
$V=1398.41(13) \AA^{3}$
$Z=4$
$D_{x}=1.644 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3166 reflections
$\theta=3.6-27.5^{\circ}$
$\mu=2.95 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, yellow
$0.18 \times 0.18 \times 0.04 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.619, T_{\text {max }}=0.891$
14573 measured reflections
3166 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.131$
$S=1.07$
3166 reflections
190 parameters
H -atom parameters constrained

Space group $P 2_{1} / c$ was uniquely assigned from the systematic absences. All H atoms were located from difference maps and then treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic), 0.99 $\left(\mathrm{CH}_{2}\right)$ or $1.00 \AA$ (aliphatic CH), and an $\mathrm{N}-\mathrm{H}$ distance of $0.96 \AA$ $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$. The atom labelling follows that used for the 1-(6-amino-1,3-benzodioxol-5-yl)-3-arylprop-2-en-1-one precursor compounds (Low, Cobo, Nogueras et al., 2004).

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

X-Ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. RA thanks the Fundación para la Promoción de la Investigación y la Tecnología (Banco de la República) and the Universidad del Valle for financial support. PC thanks COLCIENCIAS for a doctoral fellowship. JC thanks the Junta de Andalucía and the Universidad de Jaén for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1778). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Batten, S. R. \& Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Donnelly, J. A. \& Farrell, D. F. (1990). Tetrahedron, 46, 885-894.
Evans, D. G. \& Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Kurasawa, Y., Tsuruoka, A., Rikiishi, N., Fujiwara, N., Okamoto, Y. \& Kim, H. S. (2000). J. Heterocycl. Chem. 37, 791-798.

Low, J. N., Cobo, J., Nogueras, M., Cuervo, P., Abonia, R. \& Glidewell, C. (2004). Acta Cryst. C60, o744-o750.

Low, J. N., Cobo, J., Ortíz, A., Cuervo, P., Abonia, R. \& Glidewell, C. (2004). Acta Cryst. E60, o1057-o1059.
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Prager, R. \& Thredgold, M. (1968). Aust. J. Chem. 21, 229-241.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhang, S.-X., Feng, J., Kuo, S.-C., Brossi, A., Hamel, E., Tropsha, A. \& Li, K.-H. (2000). J. Med. Chem. 43, 167-176.

